Parameters of shock waves during detonation and deflagration of fuel-air clouds
نویسندگان
چکیده
منابع مشابه
Existence of Chapman-Jouguet Detonation and Deflagration Waves
We study the existence of profiles for Chapman-Jouguet detonation and deflagration waves in the Navier-Stokes equations for a reacting gas. In the limit of small viscosity, heat conductivity, and diffusion, the profiles correspond to heteroclinic orbits of a system of singularly perturbed ordinary differential equations. The burned end state of the waves, however, is a nonhyperbolic equilibrium...
متن کاملDeflagration to Detonation
Thermonuclear explosions of Type Ia supernovae (SNIa) involve turbulent deflagrations, detonations, and possibly a deflagration-to-detonation transition. A phenomenological delayed detonation model of SNIa successfully explains many observational properties of SNIa including monochromatic light curves, spectra, brightness – decline and color – decline relations. Observed variations among SNia a...
متن کاملDiagnostic techniques in deflagration and detonation studies
Advances in experimental, high-speed techniques can be used to explore the processes occurring within energetic materials. This review describes techniques used to study a wide range of processes: hot-spot formation, ignition thresholds, deflagration, sensitivity and finally the detonation process. As this is a wide field the focus will be on small-scale experiments and quantitative studies. It...
متن کاملDetonation Initiation via Imploding Shock Waves
An imploding annular shock wave driven by a jet of air was used to initiate detonations inside a 76 mm diameter tube. The tube was filled with a test gas composed of either stoichiometric ethylene-oxygen or propane-oxygen diluted with nitrogen. The strength of the imploding shock wave and the sensitivity of the test gas were varied in an effort to find the minimum shock strength required for de...
متن کاملA Numerical Study of Dynamic Detonability Characteristics of Two-phase Unconfined Fuel-Air Clouds
A numerical simulation has been carried out to study the detonability characteristics of two- phase unconfined clouds. The parameters equivalence ratio, turbulence, shape, volume and uniformity of the cloud and the delay time distribution are recognized and introduced as the most important factors determining the reactivity of the cloud and influencing the initiation of a successful detonation....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2020
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1686/1/012085